Linear Instability of the Fifth-Order WENO Method

نویسندگان

  • Rong Wang
  • Raymond J. Spiteri
چکیده

The weighted essentially nonoscillatory (WENO) methods are popular spatial discretization methods for hyperbolic partial differential equations. In this paper we show that the combination of the widely used fifth-order WENO spatial discretization (WENO5) and the forward Euler time integration method is linearly unstable when numerically integrating hyperbolic conservation laws. Consequently it is not convergent. Furthermore we show that all two-stage, second-order explicit Runge–Kutta (ERK) methods are linearly unstable (and hence do not converge) when coupled with WENO5. We also show that all optimal firstand second-order strong-stability-preserving (SSP) ERK methods are linearly unstable when coupled with WENO5. Moreover the popular threestage, third-order SSP(3,3) ERK method offers no linear stability advantage over non-SSP ERK methods, including ones with negative coefficients, when coupled with WENO5. We give new linear stability criteria for combinations of WENO5 with general ERK methods of any order. We find that a sufficient condition for the combination of an ERK method and WENO5 to be linearly stable is that the linear stability region of the ERK method should include the part of the imaginary axis of the form [−ιμ, ιμ] for some μ > 0. The linear stability analysis also provides insight into the behavior of ERK methods applied to nonlinear problems and problems with discontinuous solutions. We confirm the assertions of our analysis by means of numerical tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A conservative high order semi-Lagrangian WENO method for the Vlasov equation

Jing-Mei Qiu and Andrew Christlieb 3 Abstract In this paper, we propose a novel Vlasov solver based on a semi-Lagrangian method which combines Strang splitting in time with high order WENO (weighted essentially nonoscillatory) reconstruction in space. A key insight in this work is that the spatial interpolation matrices, used in the reconstruction process of a semi-Lagrangian approach to linear...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

An improved WENO scheme with a new smoothness indicator

We present a new smoothness indicator that evaluates the local smoothness of a function inside of a stencil. The corresponding weighted essentially non-oscillatory (WENO) finite difference scheme can provide the fifth convergence order in smooth regions. The proposed WENO scheme provides at least the same or improved behavior over the classical fifth-order WENO scheme [9] and other fifth-order ...

متن کامل

Resolution and Energy Dissipation Characteristics of Implicit LES and Explicit Filtering Models for Compressible Turbulence

Solving two-dimensional compressible turbulence problems up to a resolution of 16, 3842, this paper investigates the characteristics of two promising computational approaches: (i) an implicit or numerical large eddy simulation (ILES) framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO) reconstruction algorithm equipped with several Riemann solvers, and (ii) a...

متن کامل

Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations

Keywords: Adaptive mesh refinement (AMR) WENO High order finite difference Multiscale simulations a b s t r a c t In this paper, we propose a finite difference AMR-WENO method for hyperbolic conservation laws. The proposed method combines the adaptive mesh refinement (AMR) framework [4,5] with the high order finite difference weighted essentially non-oscillatory (WENO) method in space and the t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2007